
Code: Notes on an expressive, linguistic medium
Adam Florin 05/19/2011

As popular apprehension to computers and programming wanes, many of the grand,

science-fiction notions of what role computing will play in our lives have subsided. A

view of code as an expressive medium that enables the thinking of its author has

breached the walls of the old “hacker” counter-culture and is rapidly becoming as

ordinary as expressing oneself through writing or other creative means. Still, we tend to

lavishly endow computers and their processes with a panoply of metaphors, even in the

terms coders use to describe their own products: “tools”, “libraries”, “code”,

“programs”, “applications”, “systems”, “machines”... How do we as a culture read

these artifacts? As textual documents, as designed objects, as engineered mechanisms,

as cryptography? I set out to write this paper to clarify my own thinking, sifting

through half a century of theory and making note of what I see as the major

contemporary trends in critical thinking on the subject: computing is a medium; code is

a language; and, as human artifacts, they all reflect back to us symbolic images of our

understanding of the world around us.

* * *

Coming around to viewing computing as a medium—”a technology for transforming

and transferring messages”1, akin to print or television—was a fairly lengthy process,

and popular opinion only really accepted it once computer had become a mainstream

product, available to a mass audience. For the first decades of its existence, computing

1 From Bolter and Gromala; see next footnote.

was the exclusive domain of academic, scientific research, and as such was conceived of

in highly theoretical terms, even endowed with a certain magic that may make current

popular attitudes toward computing seem awfully mundane. Jay David Bolter and

Diane Gromala dissect the two main trends in early attitudes toward computing,

referring to them as “myths of disembodiment”.

The first “myth of disembodiment”, reigning from computers’ very inception

through the late ‘70s, was Artificial Intelligence, a topic pioneered by the eccentric early

computer theorist and mathematician Alan Turing:

During World War II, Turing had helped to build and use the mechanical Bombe and the
electronic Colossus to decrypt messages from the Germans' Enigma coding machines, so he knew
that computer could function as a technology for transforming and transferring messages—that
is, as a medium. But he went in another direction, appropriate for an introverted genius, and
became convinced that the digital computer was not just a medium but a mind. For Turing and
others who followed him, the computer should not just be a channel for human messages; it
should be a thinking machine, capable of producing its own messages.2

In this view, computers are so novel, so radically different from earlier technologies,

that I think there was a temptation to view them as a sort of alien life force. There’s a

somewhat cold and spooky tone here, and indeed, most portrayals of AI from that era

of popular culture were not benign; consider HAL from 2001: A Space Odyssey. In fact,

the fearful and apprehensive attitude to computers in sci-fi from the period feels a bit

like the apes’ reaction to the black monolith in that film. This new object was the

ultimate “black box”: opaque, impenetrable, and therefore—possibly smarter than we

are, even God-like.

There’s also much to suggest that humanity has always sought to make the

unknowable understandable by ascribing humanlike quantities to it. I’m thinking of the

origin of myth, polytheistic religions, ghosts—explanation by way of personification.

I’m hardly an expert in this subject. Sherry Turkle better explains why computers may

have been endowed with psychological interpretations than earlier technologies:

2 Jay David Bolter and Diane Gromala, Windows and Mirrors, p. 16

If you open an computer or a computer toy, you see no gears that turn, no levers that move, no
tubes that glow... Even with considerable sophistication, the workings of the computer present no
easy analogies with objects or processes that came before, except for analogies with people and
their mental processes... The physical opacity of this machine encourages it to be talked about
and thought about in psychological terms.3

Even today, techno-utopians like mad inventor Ray Kurzweil (author of books with

titles such as The Age of Spiritual Machines) tell us that computer intelligence is still set to

surpass human intelligence. (In fact, he has set a year for it: 2042, conveniently likely to

be just within his own lifetime.) While Kurzweil has no doubt provided real insights in

his field, the debate has largely cooled down, as many other scholars have moved on. To

contemporary readers, there’s a troubling logical assumption, made quite easily half a

century ago, behind the equivalence of human and machine intelligence. The thinking

then was: all human intelligence is abstract symbol manipulation; computers can do

abstract symbol manipulation; therefore, computers can achieve or surpass human

intelligence. But the very notion that human intelligence consists only of abstract

symbol manipulation is an absurdity to us now, an odd relic from the height of mid-

century structuralist thought. Second-wave feminism and poststructuralism have

encouraged us to celebrate our subjectivity, and contemporary scientific research and

pop psychology from authors like Malcolm Gladwell (Blink) reassures us that our

emotional intelligence is central to our reasoning, and hardly an extraneous artifact of

evolution.4

The second “myth of disembodiment”, per Bolter and Gromala, was “cyberspace”,

which dominated through much of the ‘80s and ‘90s. In this conception, made popular

by now-defunct technologies such as “Virtual Reality”, computing took on another

mystical form, this time as a “space” for escape from physical reality. Again, we can

3 Sherry Turkle, The Second Self, p. 22

4 For an excellent philosophical debunking of AI from a former practitioner of it, I highly recommend
Terry Winograd and Fernando Flores’ Understanding Computers and Cognition, which rests heavily on
Heidegger.

look to the sci-fi of the era for clues: in Tron or Neuromancer (where the term

“cyberspace” was coined), the computer is a realm of pure thought which humans

enter, leaving their earthly bodies behind—an image reinforced in more recent years by

The Matrix and Avatar. From the advent of the Apple through the early days of the Web

(before business interests were able to make use of computing as a commercial

medium), computers and the internet still had something of a counter-cultural air,

especially to many prominent thinkers in the Bay Area and elsewhere. No doubt the

internet gives users opportunity to reflect upon themselves, but in the era of Facebook

transparency, we don’t ascribe quite as much importance to the fantastical significance

of the avatar as then. Based on my own upbringing, I associate this era with Burning

Man and rave culture, where people assume party names and separate identities, and

thrill at the opportunity of self-reinvention as a counter-cultural rite.

I’ve been drawing from science fiction references because I see both of these earlier

notions of computing as overtly literary in their conception—casting literary identities

onto the medium, rather than recognizing it as its own sort of literary medium. In this

way, they undervalue computing as a medium by burdening it with fantastical

dimensions that made it difficult for the mainstream to penetrate.

* * *

Viewed as a medium, computing is more self-evidently a human construct, rather than

any kind of other-worldly intrusion into humanity. By the same token, we’re able to

view computer programming languages as the human languages they are. “The first

and most obvious point is that whenever someone writes a program, it is a program

about something”5, write Winograd and Flores (my emphasis). This view of

5 Terry Winograd and Fernando Flores, Understanding Computers and Cognition (1987), p. 84

programming as a reflective, authorial act is echoed by Sherry Turkle: “A computer

program is a reflection of its programmer's mind.”6 The impetus and inspiration for all

computer programs comes from a human desire to represent and model some idea or

behavior, often drawn from the physical world. Programmers frequently speak of the

“satisfaction” of just seeing an idea or concept in motion7. Programming is a profoundly

creative act. Matthew Kirschenbaum, an English professor versed in code, describes

“programming as world-making” (my emphasis again), and views computers as

“engines for creating powerful and persuasive models of the world around us”. In this

way, he links the creative act of programming to fiction (another kind of “world-

making”), and laments that his undergrad computer science classes failed to impart to

him

why and how such an activity was connected to the long traditions of humanistic thought I
encountered in the classes devoted to my major, reading Leibnitz for example or (better) Jane
Austen, surely one of our ultimate system builders and world-makers.8

Programmers have increasingly come to celebrate their position as linguistic

practitioners above all, inviting numerous parallels to authorship in “natural

languages” (as opposed to computer programming languages), in the form of

designations such as “code poet” (which, it must be said, is sometimes used

pejoratively). Kirschenbaum cites Donald E. Knuth, a computer scientist who has

placed a large emphasis on code legibility, explaining that while code must of course be

interpreted by the machine, human-readability must be a primary goal, increasing the

code’s value as a document or artifact of human thought or understanding. To this end,

he championed what he called “literate programming”, calling programming “a very

6 Sherry Turkle, The Second Self (1984), p. 19

7 This sentiment comes up frequently in the TV documentary Hackers (1984) about early Macintosh
programmers, directed and produced by my father, Fabrice Florin.

8 Matthew Kirschenbaum, "Hello Worlds", The Chronicle of Higher Education (2009)

personal activity”, and declaring that “the practitioner of literate programming can be

regarded as an essayist, whose main concern is with exposition and excellence of style."9

The emphasis on the power of programming languages as models for human

thought and action points to a greater understanding of the power of language at large.

Winograd and Flores point the field of “speech act theory, as originated by the

philosopher J. L. Austin (How to Do Things with Words, 1962)”10. Language is action, they

tell us:

Language is a form of human social action...The shift from language as description to language as
action is the basis of speech act theory, which emphasizes the act of language rather than its
representational role...
Speech acts create commitment... To be human is to be the kind of being that generates
commitments, through speaking and listening.11

Thus, computer programming may be considered a speech act: a linguistic instruction

which sets up a commitment to be executed by the computer (which of course is in no

way supposed to be considered an autonomous agent or anything human-like here—

but is rather an implement of the speech act).

“It is important to keep in mind that computer code, and computer programs, are

not machine creations and machines talking to themselves, but writings by humans”,

Florian Cramer informs us12, in an essay about the liminal space between programming

and natural languages, proposing ”a digital poetry which reflects the intrinsic textuality

of the computer” and hoping that “computers and digital poetry might teach us to pay

more attention to codes and control structures coded into all language”. He points to

earlier “poetics of formal instruction”, such as Fluxus pieces, and points out that

9 Donald E. Knuth, "Literate Programming" (1984)

10 Winograd and Flores, p. 58

11 Winograd and Flores, p. 76

12 Florian Cramer, “Digital Code and Literary Text” (2011)

“Western music is an outstanding example of an art which relies upon written formal

instruction code”:

Self-reflexive injokes such as "B-A-C-H'' in Johann Sebastian Bach's music, the visual figurations
in the score of Erik Satie's "Sports et divertissements'' and finally the experimental score drawings
of John Cage shows that, beyond a merely serving the artwork, formal instruction code has an
aesthetic dimension and intellectual complexity of its own. In many works, musical composers
have shifted instruction code from classical score notation to natural human language.

The comparison of computer source code to a musical score, and computer execution to

musical performance, recurs elsewhere. It’s a paradigm which ended up neatly fitting

the notions of language and interpretation described by philosopher Nelson Goodman

in his work Languages of Art (1968). John Lee applies this thinking to code, describing a

computer program as “a highly notational text that forms the basis of some kind of

implementation”, and finally noting that “the position of the composer, then, does seem

to closely parallel that of the computer programmer. A notational work is produced,

which the computer implements.”13

Early computer science furnished the basic concepts from discrete mathematics

(functions, variables) that were necessary to create a meaningful symbolic processing

language. In the last few decades, as technology improvements have enabled most

programmers to keep a safe distance from the physics and details of hardware-level

implementation (writing in “machine language”, the numeric sequences of digits which

undergird all computer use), programming languages for the last few decades have

taken a more linguistic turn, becoming playgrounds for experimentation in formal

symbolic languages for human thought. In fact, these languages, as tools of abstract

thought14, may be one of computers’ greatest contributions to human thought in and of

themselves. Today, coders who are so inclined may invent their own programming

languages in the abstract, based on their own intuitions, and implement them on top of

13 John Lee, "Goodman's Aesthetics and the Languages of Computing", Aesthetic Computing (2006)

14 Howard Rheingold titled one book Tools for Thought.

older, more “low-level” languages. In just such a way, Yukihiro Matsumoto designed

the Ruby programming language based on the “principle of least surprise” (a dubious

claim perhaps—least surprising to whom?), and implemented it on top of C, a more

canonical and lower-level language. He describes his motivation, clearly if somewhat

indelicately:

Often people, especially computer engineers, focus on the machines. They think, "By doing this,
the machine will run faster. By doing this, the machine will run more effectively. By doing this,
the machine will something something something." They are focusing on machines. But in fact
we need to focus on humans, on how humans care about doing programming or operating the
application of the machines. We are the masters. They are the slaves. 15

This has been the general trend in the last few decades of computing: “bring the

computer to the problem, not the problem to the computer”. Architect Malcolm

McCullough writes, “the history of programming may be understood as largely a

matter of increasing abstraction”16. Computer programming is steadily becoming

further integrated into popular culture, as the low-level programming is managed by

technical specialists, and floods of novice programmers and part-time geeks gain access

to the power of world-making on the computer. As such, we see programs more and

more as documents of human thought, artifacts of human endeavor—and as such, are

able to read them more and more as texts within the greater medium of computing.

* * *

In the past decade, the culture of code is increasingly becoming a household craft,

neither specifically radical nor corporate, but more just as an everyday language that

can express whatever the programmer desires. The earliest programming languages

and concepts, such as object-oriented programming, may have seemed predominantly

15 Bill Venners, “The Philosophy of Ruby: A Conversation with Yukihiro Matsumoto, Part I” (2003)

16 Malcolm McCullough, Abstracting Craft (1996), p. 97

modeled on mid-century corporate hierarchy and organizational theory by writers such

as Herbert Simon; such a reading can easily be found in the language of seminal books

like the Design Patterns17 book by a group of computer scientists colloquially referred to

as “the Gang of Four”, in which structures bear names such as “worker”, “factory”,

“delegate”, “command”, etc. But today, languages and the communities around them,

while still employing some of this basic structural thinking—can be more easily seen

through the lens of lifestyle; Ruby coders bundle reusable components into “gems”,

which often have slickly-designed web presences and strong branding, even for

relatively small bits of code. The Ruby community is particularly concerned with

appearances, and I must confess that when browsing for gems, I will privilege ones that

have a visual language close to my own design values before I assess the code itself. The

new open source movement is largely taking place on a site called GitHub (tagline:

“social coding”) where open-source projects are easily “forked” so that each coder can

make their own custom modifications, with a chance that the original author will “pull”

those latter changes into the original codebase. What began as an idealistic counter-

culture now looks more like sharing ideas on Twitter, or photos on Facebook. The latest

trend is to continue to pull code further from its origins as machine language, toward

natural language. Gems such as Cucumber for Ruby enable users to write “business-

readable” text (where “business” means “layperson”) for use in verifying the proper

functionality of an existing codebase.

In the era of Web 2.0, when visual design, transparency, and social networks became

the cornerstones of the web and computing as a medium in general, code has become

more available to the greater humanities-minded public. Digital Humanities and

Library Sciences programs have been teaching basic data-mining code to their students.

Coders such as Adrian Holovaty have been advocating for a new model of

17 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns (1994)

“programmer as journalist”, a position taken up by Cindy Royal18. New search engine

tools such as Wolfram Alpha make even search more closely resemble coding, and even

the somewhat curmudgeonly Don Norman, an outspoken proponent of wordless clarity

in design, suggested that search engines “are becoming ‘answer services’ controlled

through their command line interfaces”19. In the last decade, teenagers seeking to

customize their MySpace pages wrote and exchanged CSS “codes” (and by pluralizing

the word, somehow restored some of the cryptographic connotations therein!).

And while the word “interactive”—with its uncomfortable implication that the

computer has some kind of proper agency—remains commonly in use, products such as

the RjDj app for iOS have begun to use the word “reactive” to describe the user

experience. This may in fact be more descriptive. If computing is a medium, then it

must be passive by default—and if programs are all human-authored texts, then can it

be said that computers ever really initiate an interaction? This thinking may just be a

useful shorthand, as we don’t give as much credence to computers as we once did: we

don’t, for example, construe an error message as the computer “yelling” at us20.

Reactive computing can also be seen through the metaphor of the mirror, which I

found prevalent in writing on user interface. Once we’ve conceived of programming

languages as systems of thought, and created worlds within them, what do we get

back? The “techno-determinist” camp (Kittler et al.) suggests that we are deeply

affected. Other authors suggest that we receive an image of ourselves. In the context of

his interactive media art, David Rokeby writes: “Mirrors give us back an image with

which to identify. We look at the marks we have made on our world to give us a sense

18 Cindy Royal, “The Journalist as Programmer: A Case Study of The New York Times Interactive News
Technology Department”, International Symposium in Online Journalism The University of Texas at
Austin (2010)

19 Donald A. Norman, "UI Breakthrough-Command Line Interfaces", Interactions (2007)

20 However, this may be different for children, as Deborah, one adolescent example given by Sherry
Turkle in The Second Self, would begin to cry whenever she saw an error message for this reason. (p. 144)

of our significance”21. The mirror metaphor seems especially prevalent among those

close to camera-based computer vision art, in which case the computer is really re-

presenting an image captured from the physical world, much as a mirror does. Rokeby

refers to his Very Nervous System piece, and Bolter and Gromala lean on Daniel Rozin’s

excellent Wooden Mirror piece, in which the visitor’s image is recreated on physical

wooden “pixels”. For these authors (Rokeby included), the importance is that the mirror

not only draw attention to us, but to itself, as well:

In the hands of technologists, a medium evolves towards apparent transparency... The message
(as per McLuhan) that such a medium conveys may be powerful, but it is generally unintentional.
Of course, interactive artists intentionally express themselves through the opacities and
idiosyncrasies of the media that they create. These media reflect, but also guide and transform,
the gestures of the interactor. 22

This is the topic Bolter and Gromala expressly set out to prove (unfortunately never

citing Rokeby!): the basic underlying belief among Don Norman and the interaction

design set (whom they label as the “structuralists”) is that user interface should always

strive for “transparency”—which, to them, is another myth. They advocate making

better use of “the rhythms of transparency and reflectivity” (where “reflectivity” may be

understood as self-reflectivity, or Rokeby’s opacity), pointing to the Macintosh interface

as a positive example.23

Other writers are drawn to the mirror example for other reasons, citing the

important of Lacan’s “mirror phase” in child development. Sherry Turkle notes that

“some children become far more explicit ... about seeing the computer as a mirror of the

mind. These are children who make explicit use of computational metaphors to think

21 David Rokeby, “Transforming Mirrors: Subjectivity and Control in Interactive Media”, Critical Issues in
Electronic Media (1995), p. 153

22 Rokeby, p. 144

23 Bolter and Gromala, p. 74

about themselves.”24 In yet other examples, authors question the nature of Narcissus’

fixation on the image in the pool (as McLuhan did).

“Computers are a metatechnology, almost infinitely flexible and bristling with

potential,” Rokeby continues. Indeed, computing, and especially computer

programming, remains hard to pin down because it is so general. Don Norman

proposed specialized “information appliances”25, and indeed, as we see in the huge app

market for iOS, and the approval from prominent authors26, that such specialization in

our applications is beginning to take place. But this is just the case for “apps” with

complete user interfaces; and even as “domain-specific languages” gain traction, coders

will always need to have a general-purpose programming language under their belt—

just as it would be improbable for a child in the US to learn legalese but not English.

I like to joke that Computer Science is the study of how the universe would look had

it been designed by humans—overloaded with numerous, conflicting metaphors,

emerging from the accidental intersection of high-minded theory and impetuous action.

My mentor for this paper, Sara Roberts, pointed out to me that philosophy is often

driven by the technology of the day; my favorite example is that of Freud characterizing

psychosexual energies such as repression in the mechanical terms of the steam engine.

Code, however, offers the opportunity to materially participate in technology while

gaining new, rich, symbolic modes of thinking for self-reflexive thought. A large part of

the act of programming is the thinking that precedes it, and the way that thinking is

shaped through expression and articulation in code of the world as it is, and the

behaviors of objects within it. I look forward to seeing the wider adoption of coding

practice by an ever-growing humanities community, employing this new expressive

medium to make sense of the world through writing and doing.

24 Turkle, p. 155

25 Donald A. Norman, The Invisible Computer (1998)

26 Chris Anderson, “The Web is Dead. Long Live the Internet”, Wired (2010)

